Extra Manhã

Cursos de 20 horas nos dias de segunda, terça, quarta,quinta e sexta de 8h00 até 12h00 com certificação

MATERIAIS DISPONÍVEIS!

FUNDAMENTOS E APLICAÇÕES DE FOTOQUÍMICA

Professores: Tiago Lima da Silva – IQ/UFRJ, Thiago Messias Cardozo – IQ/UFRJ, Fábio da Silva MirandaFábio da Silva Miranda -IQ/UFF, Josué Sebastian Bello Forero – IQ/UFRJ, Ricardo Moreira Chaloub – IQ/UFRJ.

Local: Sala A-530
OBS.: Nos dias 11/04 e 13/04 o curso será ministrado na sala A-601
Resumo:

Curso de Fotoquímica – Módulo I por Josué Sebastian Bello Forero
Nesta parta de curso serão abordado os seguintes aspectos: Breve história da fotoquímica no Brasil. Processos fotoquímicos e fotofísicos, frisando os conceitos básicos de absorção e emissão de luz. Instrumentação: elementos necessários para um experimento fotoquímico. A fotoquímica como ferramenta sintética, analítica e biológica. Avanços recentes e aplicações da fluorescência. Princípios da terapia fotodinâmica: oxigênio singlete como espécies fototerápica.

Fluorescência da Clorofila-a por Ricardo Chaloub
Fotossíntese pode ser definida como o processo de transformação da energia eletromagnética em energia química para subsidiar a redução e/ou incorporação de nutrientes inorgânicos, como CO2, N2, NO3-, NO2-, NH4+ e SO4-, em compostos orgânicos, como glicídeos, lipídeos e proteínas. Na medida em que os produtos formados possuem maior quantidade de energia livre que os reagentes iniciais, este processo é termodinamicamente desfavorável, ocorrendo naturalmente em decorrência do fornecimento de energia, a luz solar. Assim, o primeiro evento do processo fotossintético consiste na absorção de luz devido à presença de pigmentos fotorreceptores (clorofila-a e pigmentos acessórios) associados a proteínas, formando os complexos coletores de luz, ou complexos antena. A energia absorvida é, então, transferida, na forma de éxcitons, entre os pigmentos fotorreceptores, até que seja transportada para moléculas fotoativas de clorofila-a que se encontram num microambiente denominado centro de reação, onde ocorrem os eventos energeticamente decisivos da fotossíntese. A partir de então, desencadeia-se um processo de transferência de elétrons que resulta na redução da coenzima NADP+ e na síntese de adenosina trifosfato (ATP), que representam, em última instância, os produtos da interconversão da energia luminosa e que serão utilizadas para conversão dos nutrientes inorgânicos em material celular.

O conjunto formado por complexos antena associados a um centro de reação constitui uma unidade fotossintética, denominada fotossistema. Observa-se ainda que a clorofila-a encontra-se presente em praticamente todo organismo que realiza fotossíntese oxigênica, e que sua capacidade de absorção de luz no espectro do visível é alta na região do azul e do vermelho, e mínima na região do verde. Os outros pigmentos fotossintéticos absorvem em regiões do visível complementares às de absorção da clorofila-a e, por isso mesmo, são chamados de pigmentos acessórios. Dentre os diferentes tipos de clorofila, a clorofila-a é a mais abundante, sendo encontrada no centro de reação e nos complexos coletores de luz de quase todos os organismos fotossintéticos oxigênicos, como vegetais superiores, macro e microalgas e cianobactérias. A descoberta de que a excitação da clorofila-a em solução resultava na emissão de fluorescência, e que a fluorescência emitida pelas folhas de plantas que haviam sido mantidas no escuro relacionava-se com mudanças no consumo fotossintético de CO2, abriu a perspectiva de utilização da fluorescência da clorofila-a para acessar, estudar, acompanhar e entender o âmago das reações fotoquímicas. Em linhas gerais, a energia de excitação da clorofila-a é utilizada para promover as reações fotoquímicas e o excesso pode ser dissipado como calor e/ou emitido como fluorescência. Desta forma, podemos usar um método muito sensível e não invasivo para avaliar, em tempo real, o status fisiológico dos organismos fotossintéticos em condições ambientais sujeitas a contínuas mudanças.

Navegando na escuridão multidimensional dos estados excitados – Simulação de moléculas de interesse fotoquímico por Thiago Messias Cardozo
A descrição de processos químicos como o movimento dos núcleos em uma superfície de energia potencial é uma poderosa ferramenta na elucidação dessas transformações. No entanto, essa abordagem encontra o seu limite em processos fotoquímicos, em que múltiplas superfícies de energia potencial podem estar envolvidas, e as aproximações que usamos para pensar sobre química começam a falhar. Nessa apresentação discutiremos algumas das estratégias para simular esses sistemas, limitações de modelos qualitativos, problemas em aberto e alguns resultados recentes.

Tiago Lima da Silva
Fotocatálise pode ser definida, segundo a IUPAC, como a aceleração na velocidade de uma reação química ou aceleração na velocidade da sua etapa inicial através da ação de um fotocatalisador ou fotosensibilizador que tenha sua natureza modificada pela absorção da radiação ultravioleta, visível ou infravermelha. Este aspecto conceitual é demasiado genérico e, por isso, é importante definirmos quais elementos de fotocatálise colocaremos em destaque: (1) “photocatalytic water-sppliting” ou geração de hidrogênio como recurso energético ambientalmente amigável e (2) Fotorredox catálise. Sobre o primeiro tema avançaremos sobre as contribuições em fotocatálise para a obtenção de tecnologias que permitam acessar recursos energéticos que sirvam como opção para os combustíveis fósseis vigentes. Sobre o segundo tema, nós trataremos do desenvolvimento de fotocatalisadores baseados em Rutênio e Irídio que quando fotoexcitados podem realizar ciclo redox com os substratos do meio reacional. Esta contribuição em fotocatálise tem oferecido soluções importantes para problemas dentro da área de organocatálise e ativação C-H, a exemplo. Desta maneira, este curso tem como principal objetivo apresentar alguns elementos conceituais importantes dentro da fotoquímica, e da catálise e, em segundo momento, apresentar as publicações que estão na fronteira do conhecimento científico dentro do tema de fotocatálise.

Fotoquímica Inorgânica por Fábio da Silva Miranda
Fundamentos da fotoquímica inorgânica. Processo de absorção e emissão de luz por complexos inorgânicos. Regras de seleção e tipos de transições eletrônicas. Reações de transferência de energia ou de elétrons. Flash-fotólise. Lei do gap de energia. Ajuste espectral. Efeito antena. Exemplos de compostos de coordenação de Ru(II), Os(II), Rh(III), Ir(III), Cu(I), Re(I), Pd(II), Pt(II), Eu(III) e Tb(III) com características fotofísicas e fotoquímicas interessantes. Fotoquímica supramolecular de compostos de coordenação. Uso de complexos metálicos em células solares sensibilizadas por corantes e em outras aplicações.

 

Clique aqui para ver os preços dos cursos, visitas e workshops